Kang, J. A., and Jeon, Y. J. (2021) How Is the Fidelity of Proteins Ensured in Terms of Both Quality and Quantity at the Endoplasmic Reticulum? Mechanistic Insights into E3 Ubiquitin Ligases. Int. J. Mol. Sci. 2021, 22, 2078; doi: 10.3390/ijms22042078


Kang, J. A., and Jeon, Y. J. (2020) Emerging Roles of USP18: From Biology to Pathophysiology. Int. J. Mol. Sci. 2020, 21, 6825; doi:10.3390/ijms21186825



Nam, S. M., and Jeon, Y. J. (2019) Proteostasis in the Endoplasmic Reticulum: Road to Cure. Cancers 2019, 11, 1793; doi:10.3390/cancers11111793


*Moon, H. W., *Han, H. G., and Jeon, Y. J. (2018) Protein Quality Control in the Endoplasmic Reticulum and Cancer. Int. J. Mo. Sci. 19(10), 3020

:*equal contribution



*Han, H. G., *Moon, H. W., and Jeon, Y. J. (2018) ISG15 in Cancer: Beyond Ubiquitin- Like Protein. Cancer Letters 438:52-62

:*equal contribution

Kim, S., Jing, K., Shin, S., Jeong, S., Han, S. H., Oh, H., Yoo, Y. S., Han, J., Jeon, Y. J., Heo, J. Y., Kweon, G. R., Park, S. K., Park, J. I., Wu, T., Lim, K. (2018) ω3-polyunsaturated fatty acids induce cell death through apoptosis and autophagy in glioblastoma cells: In vitro and in vivo. Oncol. Rep. 39, 239-246



Yoo, Y. S., Han, H. G., Jeon, Y. J. (2017) Unfolded protein response of the endoplasmic reticulum in tumor progression and immunogenicity. Oxid. Med. Cell. Longev. 2017:2969271, 1-18


*Jeon, Y. J., Park, J. H., *Chung, C. H. (2017) Interferon-stimulated gene 15 in the control of cellular responses to genotoxic stress. Mol. Cells 40, 83-89

: *equal contribution



Park, J. H., Yang, S. W., Park, J. M., Ka, S. H., Jeon, Y. J., Seol, J. H., Chung, C. H. (2016) Positive feedback regulation of p53 transactivity by DNA damage-induced ISG15 modification. Nature Commun. 7:12513, 1-13



Jeon, Y. J., Khelifa, S., Ratnikov, B., Scott, D. A., Feng, Y., Parisi, F., Ruller, C., Lau, E., Kim, H., Brill, L. M., Jiang, T., Rimm, D., Cardiff, R., Mills, G., Smith, J., Osterman, A. L., Kluger, Y., and Ronai, Z. A. (2015) Regulation of glutamine carrier proteins by the ubiquitin ligase RNF5 determines breast cancer response to ER stress-inducing chemotherapies. Cancer Cell 27, 354-369


Ratnikov, B., Jeon, Y. J., Smith, J., and Ronai, Z. A. (2015) Right on Target: Glutamine metabolism in cancer. Oncoscience 2:8, 681-683


Tomati, V., Sondo, E., Armirotti, A., Caci, E., Pesce, E., Marini, M., Gianotti, A., Jeon, Y. J., Cilli, M., Pistorio, A., Mastracci, L., Ravazzolo, R., Scholte, B., Ronai, Z., Galietta, L. J., Pedemonte, N. (2015) Genetic inhibition of the ubiquitin ligase RNF5 attenuates phenotypes associated to F508del cystic fibrosis mutation. Sci. Rep. 5:12138, 1-17


Yoo, H. M., Park, J. H., Jeon, Y. J., and Chung, C. H. (2015) Ubiquitin-fold modifier 1 as a regulator of breast cancer. Front. Endocrinol. 6:36, 1-7



Park, J. H., Lee, S. W., Yang, S. W., Yoo, H. M., Park, J. M., Seong, M. W., Ka, S. H., Oh, K. H., *Jeon, Y. J., and *Chung, C. H. (2014) Modification of DBC1 by SUMO2/3 is crucial for p53-mediated apoptosis in response to DNA damage. Nature Commun. 5:5483, 1-12

: *equal contribution


Yoo, H. M., Kang, S. H., Kim, J. Y., Lee, J. E., Seong, M. W., Lee, S. W., Ka, S. H., Sou, Y., Komasu M., Tanaka K., Lee, S. T., Noh, D. Y., Baek, S. H., *Jeon, Y. J., and *Chung, C. H. (2014) Modification of ASC1 by UFM1 is crucial for ERα transactivation and breast cancer development. Mol. Cell 56, 261-274

: *equal contribution


Park, J. M., Yang, S. W., Yu, K. R., Ka, S. H., Lee, S. W., Seol, J. H., *Jeon, Y. J., and *Chung, C. H. (2014) Modification of PCNA by ISG15 plays a crucial role in termination of error-prone translesion DNA synthesis.

Mol. Cell 54, 626-638

: *equal contribution



Yang, S. W., Oh, K. H., Park, E., Chang, H. M., Park, J. M., Seong, M. W., Ka, S. H., Song, W. K., Park, D. E., Baas, P. W., *Jeon, Y. J., and *Chung, C. H. (2013) USP47 and C-terminus of HSP70-interacting protein (CHIP) antagonistically regulate katanin-p60-mediated axonal growth. J. Neurosci. 33, 12728-12738

: *equal contribution


Park, E., Lee, J. W., Yoo, H. M., Ha, B. H., An, J. Y., Jeon, Y. J., Seol, J. H., Eom, S. H., and Chung, C. H. (2013) Structural alteration in the pore motif of the bacterial 20S proteasome homolog HslV leads to uncontrolled protein degradation. J. Mol. Biol. 425, 2940-2954



Jeon, Y. J., Jo, M. G., Yoo, H. M., Hong, S. H., Park, J. M., Ka, S. H., Oh, K. H., Seol, J. H., Jung, Y. K., and Chung, C. H. (2012) Chemosensitivity is controlled by p63 modification with ubiquitin-like protein ISG15. J. Clin. Invest. 122, 2622-2636


Lee, S. W., Lee, M. H., Park, J. H., Kang, S. H., Yoo, H. M., Ka, S. H., Oh, Y. M., *Jeon, Y. J., and *Chung, C. H. (2012) SUMOylation of hnRNP-K is required for p53-mediated cell-cycle arrest in response to DNA damage. EMBO J. 31, 4441-4452

: *equal contribution


Lee, S. W., Seong, M. W., Jeon, Y. J., and Chung, C. H. (2012) Ubiquitin E3 ligases controlling p53 stability. Animal Cells Syst. 16, 173-182



Oh, K. H., Yang, S. W., Park, J. M., Seol, J. H., Temura, S., Natsume, T., Murata, S., Tanaka, K., *Jeon, Y. J., and *Chung, C. H. (2011) Control of AIF-mediated programmed cell death by antagonistic functions of CHIP ubiquitin E3 ligase and USP2 deubiquitinating enzyme. Cell Death Differ. 18, 1326-1336

: *equal contribution


*Ha, B. H., *Jeon, Y. J., Tatsumi, K., Komatsu, M., Tanaka, K., Watson, C. M., Wallis, G., Chung, C. H., and Kim, E. (2011) Structure of ubiquitin-fold modifier 1-specific protease, UfSP2. J. Biol. Chem. 286, 10248-10257

: *equal contribution




Jeon, Y. J., Yoo, H. M., and Chung, C. H. (2010) ISG15 and immune diseases. Biochim. Biophys. Acta (Molecular Basis of Diseases) 1802, 485-496




Jeon, Y. J., Choi, J. S., Lee, J. Y., Yu, K. R., Ka, S. H., Kang, S. H., Oh, K. H., Baek, S. H., Kim, K. I., Zhang, D. E., Bang, O. S., and Chung, C. H. (2009) ISG15 modification of filamin B negatively regulates type-I interferon-induced JNK signaling pathway. EMBO Rep. 10, 374-380


Lee, J. W., Park, E., Jeong M. S., Jeon, Y. J., Eom, S. H., Seol, J. H., and Chung, C. H. (2009) HslVU ATP-dependent protease utilizes maximally six among twelve threonine active sites during proteolysis. J. Biol. Chem. 284, 33475-33484




Jeon, Y. J., Choi, J. S., Lee, J. Y., Yu, K. R., Ka, S. H., Cho, Y., Choi, E. J., Baek, S. H., Seol, J. H., Park, D., Bang, O. S., and Chung, C. H. (2008) Filamin B serves as a molecular scaffold for type-I interferon-induced JNK1 signaling pathway. Mol. Biol. Cell 19, 5116-5130



Park, S. C., Jia, B., Yang, J. K., Van D. L., Shao, Y. G., Han S. W., Jeon, Y. J., Chung, C. H., and Cheong, G. W. (2006) Oligomeric structure of the ATP-dependent protease La (Lon) of Escherichia coli. Mol. Cells 21, 129-134



Kim, K. I., Baek, S. H., Jeon, Y. J., Nishimori, S., Suzuki, T., Uchida, S., Shimbara, N., Saitoh, H., Tanaka, K., and Chung, C. H. (2000) A new SUMO-1-specific protease, SUSP1, that is highly expressed in reproductive organs.

J. Biol. Chem. 275, 14102-14106